Machine generated contents note: 1. Seaweed thalli and cells -- 1.1. Introduction: the algae and their environments -- 1.1.1. Seaweeds -- 1.1.2. Environmental-factor interactions -- 1.1.3. Laboratory culture versus field experiments -- 1.2. Seaweed morphology and anatomy -- 1.2.1. Thallus construction -- 1.2.2. The Littler functional-form model -- 1.2.3. Unitary, clonal, and coalescing seaweeds, and modular construction -- 1.3. Seaweed cells -- 1.3.1. Cell walls -- 1.3.2. Cytoplasmic organelles -- 1.3.3. Cytoskeleton and flagella apparatus -- 1.3.4. Cell growth -- 1.3.5. Cell division -- 1.4. Molecular biology and genetics -- 1.4.1. Advances in seaweed molecular biology -- 1.4.2. Seaweed genetics -- 1.4.3. Nucleocytoplasmic interactions -- 1.5. Synopsis -- 2. Life histories, reproduction, and morphogenesis -- 2.1. Introduction -- 2.2. Theme and variations -- 2.3. Environmental factors in Life histories -- 2.3.1. Seasonal anticipators and responders -- 2.3.2. Temperature.
Contents note continued: 2.3.3. Light: photoperiod and wavelength -- 2.3.4. Other factors -- 2.4. Fertilization biology -- 2.5. Settlement, attachment, and establishment -- 2.5.1. Settlement -- 2.5.2. Attachment -- 2.5.3. Establishment -- 2.6. Thallus morphogenesis -- 2.6.1. Cell differentiation -- 2.6.2. Development of the adult form -- 2.6.3. Seaweed growth substances -- 2.6.4. Wound healing and regeneration -- 2.7. Synopsis -- 3. Seaweed communities -- 3.1. Intertidal zonation patterns -- 3.1.1. Tides -- 3.1.2. Vertical zonation on intertidal rocky shores -- 3.1.3. Factors controlling vertical zonation -- 3.2. Subtidal zonation on rocky shores -- 3.3. Seaweed communities -- 3.3.1. Tropical -- 3.3.2. Temperate -- 3.3.3. Polar -- 3.3.4. Tide pools -- 3.3.5. Estuaries and salt marshes -- 3.3.6. Deep-water seaweeds -- 3.3.7. Floating seaweeds -- 3.3.8. Other seaweed habitats and communities -- 3.4. Invasive seaweeds -- 3.5.Community analysis -- 3.5.1. Vegetation analysis -- 3.5.2. Population dynamics.
Contents note continued: 3.6. Synopsis -- 4. Biotic interactions -- 4.1. Foundation species and facilitation -- 4.2.Competition -- 4.2.1. Interference competition -- 4.2.2. Epibionts and allelopathy -- 4.2.3. Exploitative competition -- 4.3. Grazing -- 4.3.1. Impact of grazing on community structure and zonation -- 4.3.2. Seaweed-herbivore interactions -- 4.4. Chemical ecology of seaweed-herbivore interactions -- 4.4.1. Bioactive chemicals -- 4.4.2. Chemical defenses against grazers -- 4.5. Symbiosis -- 4.5.1. Mutualistic relationships -- 4.5.2. Seaweed endophytes -- 4.5.3. Kleptoplasty -- 4.6. Synopsis -- 5. Light and photosynthesis -- 5.1. An overview of photosynthesis -- 5.2. Irradiance -- 5.2.1. Measuring irradiance -- 5.2.2. Light in the oceans -- 5.3. Light harvesting -- 5.3.1. Plastids, pigments, and pigment-protein complexes -- 5.3.2. Functional form in light trapping -- 5.3.3. Photosynthesis at a range of irradiances.
Contents note continued: 5.3.4. Action spectra and testing the theory of complementary chromatic adaptation -- 5.4. Carbon fixation: the "dark reactions" of photosynthesis -- 5.4.1. Inorganic carbon sources and uptake -- 5.4.2. Photosynthetic pathways in seaweeds -- 5.4.3. Light-independent carbon fixation -- 5.5. Seaweed polysaccharides -- 5.5.1. Storage polymers -- 5.5.2. Wall matrix polysaccharides -- 5.5.3. Polysaccharide synthesis -- 5.6. Carbon translocation -- 5.7. Photosynthetic rates and primary production -- 5.7.1. Measurement of photosynthesis and respiration -- 5.7.2. Intrinsic variation in photosynthesis -- 5.7.3. Carbon losses -- 5.7.4. Autecological models of productivity and carbon budgets -- 5.7.5. Ecological impact of seaweed productivity -- 5.8. Synopsis -- 6. Nutrients -- 6.1. Nutrient requirements -- 6.1.1. Essential elements -- 6.1.2. Essential organics: vitamins -- 6.1.3. Limiting nutrients -- 6.2. Nutrient availability in seawater -- 6.3. Pathways and barriers to ion entry.
Contents note continued: 6.3.1. Membrane structure and ion movement -- 6.3.2. Movement to and through the membrane -- 6.3.3. Passive transport -- 6.3.4. Facilitated diffusion -- 6.3.5. Active transport -- 6.4. Nutrient-uptake kinetics -- 6.4.1. Measurement of nutrient-uptake rates -- 6.4.2. Factors affecting nutrient-uptake rates -- 6.5. Uptake, assimilation, incorporation, and metabolic roles -- 6.5.1. Nitrogen -- 6.5.2. Phosphorus -- 6.5.3. Calcium and magnesium -- 6.5.4. Sulfur -- 6.5.5. Iron -- 6.5.6. Trace elements -- 6.6. Long-distance transport (translocation) -- 6.7. Growth kinetics -- 6.7.1. Measurement of growth kinetics -- 6.7.2. Growth kinetic parameters and tissue nutrients -- 6.8. Effects of nutrient supply -- 6.8.1. Surface-area: volume ratio and morphology -- 6.8.2. Chemical composition and nutrient limitation -- 6.8.3. Nutrient storage and nutrient availability -- 6.8.4. Growth rate and distribution -- 6.8.5. Effects of nutrient enrichment on community interactions -- 6.9. Synopsis.
Contents note continued: 7. Physico-chemical factors as environmental stressors in seaweed biology -- 7.1. What is stress? -- 7.2. Natural ranges of temperature and salinity -- 7.2.1. Open coastal waters -- 7.2.2. Estuaries and bays -- 7.2.3. Intertidal zone -- 7.3. Temperature effects -- 7.3.1. Chemical reaction rates -- 7.3.2. Metabolic rates -- 7.3.3. Growth optima -- 7.3.4. Temperature tolerance -- 7.3.5. Physiological adaptation to changes in temperature -- 7.3.6. Temperature tolerance in polar seaweeds -- 7.3.7. El Nino -- 7.3.8. Temperature and geographic distribution -- 7.4. Biochemical and physiological effects of salinity -- 7.4.1. Water potential -- 7.4.2. Cell volume and osmotic control -- 7.4.3. Effects of salinity changes on photosynthesis and growth -- 7.4.4. Tolerance and acclimation to salinity -- 7.5. Further stresses related to water potential: desiccation and freezing -- 7.5.1. Desiccation -- 7.5.2. Freezing -- 7.6. Exposure to ultraviolet radiation.
Contents note continued: 7.7. Variation in seawater pH and community-based impacts of ocean acidification -- 7.8. Interaction of stressors, oxidative stress, and cross adaptation -- 7.9. Physiological stress indicators -- 7.10. Synopsis -- 8. Water motion -- 8.1. Water flow -- 8.1.1. Currents -- 8.1.2. Physical nature of waves -- 8.1.3. Laminar and turbulent flow over surfaces -- 8.1.4. Methods for measuring seawater flow and wave forces -- 8.2. Water motion and biological processes -- 8.2.1. Function and form in relation to resource acquisition -- 8.2.2. Synchronization of gamete and spore release -- 8.3. Wave-swept shores -- 8.3.1. Biomechanical properties of seaweeds -- 8.3.2. Wave action and other physical disturbances to populations -- 8.4. Synopsis -- 9. Pollution -- 9.1. Introduction -- 9.2. General aspects of pollution -- 9.3. Metals -- 9.3.1. Sources and forms -- 9.3.2. Adsorption, uptake, accumulation, and biomonitors -- 9.3.3. Mechanisms involving tolerance to toxicity.
Contents note continued: 9.3.4. Effects of metals on algal metabolism -- 9.3.5. Factors affecting metal toxicity -- 9.3.6. Ecological aspects -- 9.4. Oil -- 9.4.1. Fate of oil in the ocean -- 9.4.2. Effects of oil on algal metabolism, life cycles, and communities -- 9.4.3. Ecological aspects -- 9.5. Synthetic organic chemicals -- 9.6. Eutrophication -- 9.6.1. Sewage effluent and impacts of nutrient enrichment on algal communities -- 9.6.2. Sewage effluent and toxicity -- 9.6.3. Other anthropogenic nutrient sources -- 9.7. Radioactivity -- 9.8. Thermal pollution -- 9.9. Synopsis -- 10. Seaweed mariculture -- 10.1. Introduction -- 10.2. Pyropia/Porphyra mariculture -- 10.2.1. Biology -- 10.2.2. Cultivation -- 10.2.3. Problems in Pyropia culture -- 10.2.4. Future trends -- 10.3. Saccharina/Laminaria for food and alginates -- 10.3.1. Cultivation -- 10.3.2. Utilization and future prospects -- 10.4. Undaria for food -- 10.4.1. Cultivation -- 10.4.2. Food products and future trends.
Contents note continued: 10.5. Kappaphycus and Eucheuma for carrageenans -- 10.5.1. Biology -- 10.5.2. Cultivation -- 10.5.3. Production, uses, and future prospects -- 10.6. Gelidium and Gracilaria for agar -- 10.6.1. Gelidium production and products -- 10.6.2. Gracilaria production and products -- 10.7. Tank cultivation -- 10.8. Offshore/open-ocean cultivation -- 10.9. Integrated Multi-Trophic Aquaculture (IMTA) and biomitigation -- 10.10. Other uses of seaweeds -- 10.11. Seaweed biotechnology: current status and future prospects -- 10.12. Synopsis.